Appendix J USCG Dry Cargo Sweepings Scientific Investigation: Identification of Sonar Investigation Sites 1

2 USCG Dry Cargo Sweepings Scientific Investigation:

3 Identification of Sonar Investigation Sites

TO: U.S. Coast Guard

FROM: CH2M HILL

DATE: February 16, 2007

- 4 This memorandum provides documentation of the process used to identify sweeping zones
- 5 for side-scan sonar investigation and mapping for the U.S. Coast Guard Dry Cargo
- 6 Sweepings Impact Analysis Project Task 5 Historical Deposition Analysis (Volpe et al.,
- 7 2006). Sonar investigation zones were identified for Lake Superior, Michigan, and Erie. As
- 8 described below, these zones were developed based upon the density of historical shipping
- 9 routes, material associated with the sweepings, information gleaned from Lake Carrier
- 10 Association (LCA) interviews, and other sweeping information (U.S. Coast Guard, 2002;
- 11 U.S. Coast Guard, 2005).

12 Introduction

- 13 Side-scan sonar data collection for mapping occurred primarily on U.S. Coast Guard vessels
- in and around bulk cargo shipping lanes with known high density of historical sweeping
- 15 activities in the Great Lakes. Sonar readings were collected for sites on Lake Superior, Lake
- 16 Michigan, and Lake Erie. The purpose of the study was to document the occurrence (if any)
- and characterize deposition patterns of dry cargo sweepings that had accumulated on the
- 18 lake bottom from historic sweepings activities. The focus was on areas of reported
- 19 sweepings activities in Lakes Erie, Michigan and Superior. In comparison to these lakes,
- 20 Lakes Huron and Ontario had limited dry cargo loading and unloading and were not
- 21 selected for sonar analysis.
- 22 This memorandum summarizes the historical sweepings locations and sweeping material
- 23 types to more accurately target potential historical sweepings locations during the lake
- bottom sonar mapping. The sonar findings will in turn aid the U.S. Coast Guard in efforts to
- 25 assess whether dry cargo sweepings practices have significant environmental impacts and
- 26 ultimately develop a policy for dry cargo sweepings management. The dry cargo sweepings
- 27 types selected for detailed analysis based on the Scientific Approach (Volpe et al., 2006)
- were western coal, eastern coal, limestone, and taconite pellets. The results of the mapping
- 29 will also be used to select sites for sediment sampling during the spring 2007 field
- 30 investigation.

31 Geographic Information System Historical Data Analysis

- 32 Historical sweepings data documentation included the starting and ending coordinates of
- dry cargo sweepings for the 2004 shipping season as logged by U.S. flagged vessels. This
- 34 data set was obtained and plotted onto geographic information system (GIS) digitized
- 35 navigation maps. This data set had been compiled during the previous investigations
- 36 supporting the U.S. Coast Guard rule making (U.S. Coast Guard, 2005). Areas with high

1

- densities of sweepings for each of the target sweeping types were then selected for sonar
- 38 investigation. Consideration was also given to the predominant material discharged in each
- 39 lake to increase the likelihood that each of the selected sweepings types (coal, taconite, and
- 40 limestone) would be observed.
- During the analysis of Lake Erie data, it became apparent that a significant volume of
- 42 shipping in the area was conducted by Canadian flag vessels. To provide a better
- characterization of sweeping in Lake Erie, an additional data set prepared as part of A Study
- of Dry Cargo Residue Discharges in the Great Lakes (U.S. Coast Guard, 2002) was obtained. This
- 45 additional data set provided sweepings information from the 2001 shipping season and
- 46 included Canadian flagged vessels. It was used to supplement the 2005 U.S. Coast Guard
- 47 data for only the Lake Erie analysis.

48 Lake Superior

- 49 Selection Criteria
- 50 Historical information indicates that iron ore and coal are the predominant cargo loaded in
- 51 the study area. GIS data mapping shows that Duluth (Figure 1) is a high traffic loading port
- 52 for coal and taconite shipments, and Silver Bay (Figure 2) loads a high volume of taconite.
- 53 Coal shipped from Duluth is primarily western coal. Coal shipments in Lake Erie are
- 54 predominantly eastern coal, which could have a different chemical composition.

55 Zone Location

- 56 Figures 1 and 2 illustrate the two potential investigation zones for Lake Superior. The high
- 57 concentration of sweepings occurrences, combined with the overlap of LCA track line routes
- out of Duluth and Silver Bay, provide a high level of confidence that sweepings occur in
- 59 these areas. Verbal discussions with the LCA also indicate that the route out of Duluth is a
- 60 high traffic area. These two locations were consequently chosen as side scan sonar
- 61 investigation locations. Coordinates in decimal degrees of the two study areas were as
- 62 follows:

63 Western Coal Area

- 64 LONG. -91.878759, LAT. 46.830218; LONG.-91.432217, LAT. 46.985741
- 65 LONG.-91.874684, LAT. 46.818140; LONG.-91.426470, LAT. 46.968938
- 66 Taconite Area
- 67 LONG.-90.850466, LAT. 47.323964; LONG.-90.427784, LAT. 47.370171
- 68 LONG.-90.850466, LAT. 47.315631; LONG.-90.427371, LAT. 47.356631

69 Lake Michigan

- 70 Selection Criteria
- 71 Historical information indicates that coal is the predominant cargo loaded in the Lake
- Michigan area. As can be seen in Figure 3, the majority of coal sweeping occurs along
- 73 Track 15 leaving Calumet Harbor. The primary investigation zone was selected to sample in
- 74 this area.
- A supplementary route encompassing the confluence of several shipping lanes into or out of
- 76 multiple Lake Michigan ports were selected for sampling in case additional ship time was

- 77 available after data gathering in the primary study area. While the 2005 U.S. Coast Guard
- 78 report did not indicate significant sweepings occurred in 2004 within this area, this
- 79 confluence of shipping lanes appeared to be a good high-density ship traffic location for
- 80 evidence of older sweepings (pre-sweepings restrictions).

81 Zone Location

- 82 Figure 3 illustrates the two potential investigation zones for Lake Michigan. The primary
- 83 zone was the larger and more northerly zone. The secondary zone was the smaller zone.
- 84 Coordinates in decimal degrees of the two study areas were as follows:

85 **Primary Coal Area**

- 86 LONG. -87.1978, LAT. 42.4999; LONG.-87.1762, LAT. 42.4999
- 87 LONG.-87.3746, LAT. 42.0261; LONG.-87.3558, LAT. 42.0190

88 Secondary Coal Area

- 89 LONG.-87.4542, LAT. 41.8506; LONG.-87.4347, LAT. 41.8486
- 90 LONG.-87.4661, LAT. 41.7933; LONG.-87.4468, LAT. 41.7941
- 91 LONG.-87.4618, LAT. 41.7354; LONG.-87.4425, LAT. 41.7362

92 Lake Erie

93 Selection Criteria

- 94 Historical information indicates that coal and stone are the predominant cargo loaded in the
- Lake Erie area. However, the original data set obtained for the 2004 shipping season in the
- 96 e²M report shown in Figure 4 (U.S. vessels only) did not show a significant volume of coal
- 97 shipping. Further research confirmed that the ports of Ashtabula, Conneaut, and Toledo are
- 98 significant coal shippers; however, a significant volume of the coal was shipped on
- 99 Canadian flag vessels. To better characterize actual sweeping patterns in Lake Erie, data
- from the 2001 shipping season for both U.S. and Canadian flag vessels (U.S. Coast Guard,
- 101 2002) were obtained and plotted. This additional data set provided additional insight into
- 102 Lake Erie shipping and sweeping locations and provided greater consistency with patterns
- documented in the prior studies.
- Figure 5 includes sweepings data from both the 2004 shipping season (U.S. vessels) and the
- 2001 shipping season (Canadian and U.S. vessels). From this plot, three potential study
- zones were identified. The primary zone was selected to identify sweepings from ships
- leaving Ashtabula loaded primarily with coal. The identified zone contains a high volume of
- sweepings with similar starting points within a relatively narrow track. There is not an
- official navigation route from Ashtabula headed westward, so the sonar study target area
- relied solely on the 2 years of sweepings data to determine a location.
- 111 A secondary zone was selected to identify stone sweepings from ships traveling between
- 112 Sandusky and Cleveland. Sandusky (Marblehead) is a known location for limestone
- shipping. Figure 5 identifies several reported sweepings in this path. To confirm the
- selection of this zone, the raw data set was reviewed and additional sweepings between
- these cities were identified that did not have specific coordinates associated with the data.
- 116 A third zone was selected to identify coal sweepings from ships leaving the port of
- 117 Conneaut. Conneaut is another port known for shipping coal. This zone also contained a

- 118 high volume of coal sweepings; however, the sweepings encompassed a wider area. There is
- 119 not an official navigation route from Conneaut headed westward, so the sonar study target
- area relied solely on the 2 years of sweepings data to determine a location. This third area
- was selected in case ship time was available after data gathering in the primary and
- 122 secondary study areas.

123 Zone Location

128

- Figure 5 illustrates the three potential investigation zones for Lake Erie. The primary zone
- was the central zone. The secondary zone was the southwest zone. A third tertiary zone was
- 126 located farther east in case ship time and weather conditions allowed for additional data
- 127 collection. Coordinates of the three study areas were as follows:

Primary Coal Area

- 129 LONG. -81 58' 2.22", LAT. 41 51' 37.10"; LONG.-81 28" 20.00", LAT. 41 53' 46.05"
- 130 LONG.-81 57′ 51.17″, LAT. 41 50′ 31.04″; LONG.-81 28′ 27.75″, LAT. 41 52′ 38.24″
- 131 Secondary Stone Area
- 132 LONG.-82 40′ 53.08″, LAT. 41 34′ 19.18″; LONG.-82 22′ 55.63″, LAT. 41 33′ 43.74″
- LONG.-82 40′ 57.33″, LAT. 41 33′ 21.06″; LONG.-82 22′ 58.47″, LAT. 41 32′ 45.62″
- 134 Tertiary Coal Area
- LONG.-80 50' 8.24", LAT. 42 8' 46.94"; LONG.-80 45' 44.69", LAT. 42 9' 33.89"
- LONG.-80 48' 39.75", LAT. 42 4' 43.39"; LONG.-80 44' 33.44", LAT. 42 5' 33.49"

137 Conclusions

- 138 For each lake, zones of heavy sweeping activities were identified. To the extent logistics
- permitted, each of the zones was mapped with multi-beam side scan sonar to identify the
- presence/absence and relative density of sweepings within the sediment. In addition, to the
- extent logistics permitted, possible areas of dense sweepings were videoed and
- sediment/deposited sweepings sampled for visual inspection.

143 References

- 144 U.S. Coast Guard. 2002. "A Study of Dry Cargo Residue Discharges in the Great Lakes."
- 145 Prepared for the U.S. Coast Guard, Office of Operating and Environmental Standards
- 146 (G-MSO), Environmental Standards Division (G-MSO-4). Washington, D.C.
- 147 U.S. Coast Guard. 2005. Study of Incidental Dry Cargo Residue Discharges in the Great Lakes.
- 148 Prepared for the U.S. Coast Guard, Office of Standards Evaluation and Development (G-
- 149 PSR-1), Washington, D.C.
- 150 Volpe National Transportation System Center, Parsons Brinckerhoff Quade & Douglas, Inc.,
- and CH2M HILL. 2006. Scientific Approach for Dry Cargo Sweepings Impact Analysis. Prepared
- 152 for the U.S. Coast Guard, Washington, D.C.